SECOND QUARTERLY REPORT

for

DEVELOPMENT OF PILE TYPE, HIGH DISCHARGE RATE NICKEL-CADMIUM SQUIB BATTERIES

JUNE 5, 1966 - SEPTEMBER 4, 1966

CONTRACT NO.: NASS-10160

Prepared By

GULTON INDUSTRIES, INC.
ALKALINE BATTERY DIVISION
212 Durham Avenue
Metuchen, N. J.

SOLITY FORM 602

For

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

SECOND QUARTERLY REPORT

for

DEVELOPMENT OF PILE TYPE, HIGH DISCHARGE RATE NICKEL-CADMIUM SQUIB BATTERIES

JUNE 5, 1966 - SEPTEMBER 4, 1966

CONTRACT NO.: NAS5-10160

Prepared By

GULTON INDUSTRIES, INC.
ALKALINE BATTERY DIVISION
212 Durham Ave.
Metuchen, N. J.

for

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

Prepared By:

S. Charlip

Section Head

Engineering Development

Approved By:

H. N. Seiger

Director of Research

R. C. Shair

Vice President

Research & Development

DEVELOPMENT OF PILE TYPE, HIGH DISCHARGE RATE, NICKEL-CADMIUM SQUIB BATTERIES

by

S. Charlip

ABSTRACT

The object of this report is to summarize the work and results accomplished during the past quarter in a program directed toward the design and development of a pile type, nickel cadmium, squib battery.

Cells with 2 square inches of active area were constructed and subjected to 10 ampere pulse discharges. The resultant voltage fell below 1.0 volts per cell. Previously cells with 4 square inches of active area gave 1 volt at 20 amperes.

Several intermediate sizes of cells with electrode areas of 2.40, 2.76, and 3.14 square inches were constructed and tested. It was found that there is no linear relationship between current density and voltage. The larger plates showed little improvement in voltage. The 2.76 square inch plate appears to be the minimal electrode required, based on cell data only. Cells were pulsed for 20 milliseconds to determine the presence and effects of concentration polarization and activation polarization on positive and negative electrodes respectively.

A five cell battery (of 2 square inch electrodes) was assembled and tested. Sealing problems were encountered during the battery assembly.

TABLE OF CONTENTS

	PAGE NO.
ABSTRACT	ii
INTRODUCTION	1
TECHNICAL DISCUSSION	2
Test Procedure	2
SUMMARY OF TEST RESULTS AND CONCLUSIONS	. 6
Battery Discharge	11
DISCUSSION OF RESULTS & CONCLUSIONS	18
WORK PLANNED	19

TABLE OF FIGURES

FIGURE	NO.	PAGE NO.
1	HIGH CURRENT-LOW VOLTAGE DISCHARGE APPARATUS	4
2	MOTOR DRIVEN SWITCH	5
3a	PULSE DISCHARGE FOR A SINGLE BIPOLAR CELL WITH 2.07 IN ² ACTIVE PLATE AREA PULSE NO. 1 - 10 AMPERES	: 7
3ъ	PULSE DISCHARGE FOR A SINGLE BIPOLAR CELL WITH 2.07 IN ² ACTIVE PLATE AREA PULSE NO. 2 - 10 AMPERES	7
4	OSCILLOSCOPE TRACES OF 4 SQUARE INCH BIPOLAR ELECTRODES a. Load 0.0447 Ohms b. Load 0.0244 Ohms c. Load 0.0155 Ohms	8
5	VOLTAGE-CURRENT RELATIONSHIP-SINGLE BIPOLAR CELL 2.074 IN ² ACTIVE AREA	9
6	ELECTRODE TO REFERENCE PULSES - ALL LOAD AT 0.0244 OHMS,	10
7	PULSE DISCHARGE OF A SINGLE BIPOLAR CELL WITH 2.40 IN ² ACTIVE PLATE AREA a. Pulse No. 1 - Current 11.0 Amperes b. Pulse No. 2 - Current 11.0 Amperes	12
8	PULSE DISCHARGE OF A SINGLE BIPOLAR CELL WITH 2.76 IN ² ACTIVE PLATE AREA a. PULSE NO. 1 - Current 10.5 Amperes b. PULSE NO. 2 - Current 10.5 Amperes	13
9	PULSE DISCHARGE FOR A SINGLE BIPOLAR CELL WITH 3.14 IN ² ACTIVE PLATE AREA - CURRENT 10.5 AMPERES	14
10	5 CELL BATTERY WITH 2 IN ² OF SINTER AREA	15
11	CHARGE & DISCHARGE OF A 5 CELL BATTERY SHOWIN	NG 16
12	PULSE DISCHARGE FOR A 5 CELL BIPOLAR BATTERY WITH ACTIVE PLATE AREA OF 2.07 IN ² /PLATE	17

INTRODUCTION

During the first quarter, efforts were directed to project organization, engineering analysis of design parameters, and the development of sintering and impregnation techniques for bipolar plates.

Sintering and impregnation problems, uniquely associated with bipolar plates, were overcome, and techniques for sintering and impregnating circular electrodes were developed. These differed considerably from the techniques employed in the manufacture of any conventional electrodes.

The objectives are: the development of a bipolar battery capable of yielding a pulse of 10 amperes for 1 second above 5 volts with a minimum capacity of 150 mAh, within a cylindrical envelope of 3 cubic inches (less terminal hardware).

Several cells with active sinter areas of 4 square inches (2½ inch dia.) were constructed and tested in an open beaker for capacity and pulse discharge. The results indicated that the cells are capable of higher capacities than required. The test results were reported in the First Quarterly Report.

The 4 square inch plates, when manufactured into a bipolar battery, would have bordered on the limit of the allowable space and would have exceeded that limit after the module was encapsulated. Several intermediate plate sizes were constructed and tested for capacity and pulse discharge. Plates with 2 square inches of active area (1-5/8 inch dia.) were constructed first. This size was considered the smallest theoretically capable of meeting the discharge requirements. Several cells were built and tested, including a 5 cell module.

Intermediate size plates between 1-5/8 and 2-1/4 inches in diameter were also constructed and tested. The results of these tests and their meaning are discussed in this report.

TECHNICAL DISCUSSION

The data given in the First Quarterly Report, based on single cell_discharges, indicated that a battery consisting of 5 cells with 4 in active area was capable of sustaining a 20 ampere discharge while maintaining a voltage on or above 1.0 volt per cell. Since a battery with this area would have a volume greater than 3.00 in when completely encapsulated, it was necessary to go to a smaller size.

It would seem logical that if the area and the current were reduced by half, the current density would remain constant and, therefore, the cell voltage would also remain constant. The first step was to reduce the area to 2 in² (a circular plate of 1-5/8 in. dia. of active area). The results obtained were not those anticipated. Therefore, three other sizes were prepared, increasing the diameter by 1/8 inch in each case.

Test Procedure

Two types of test procedures were used to evaluate the current-voltage relationship. The first procedure used was described in the First Quarterly Report and consisted of the actual pulse discharge of 10 amperes for 1 second. In this case, the cell or battery under test was backed up by a high capacity (35 Ah) battery of 28 volts to sustain a constant current regardless of the voltage changes in the test cell.

The second type of test consists of a pulse discharge of 20 milliseconds duration through a fixed load. The advantage in this type of testing lies in the fact that the test cell is supplying the energy and not acting as a resistor during a forced discharge. In some cases there has been a discrepancy between the two methods. As a check of the first method, a series of pulse discharges were conducted using the second method. For a better understanding of the problems of current density and electrode area, reference electrodes were used with the fixed load pulses. The test cell was made up of two end plates (sintered on one side only) with nickel tabs spotwelded to the outside (bare) end of the cell. A 7 mil separator, of a nonwoven nylon, was placed between the plates, and the cell was clamped between two plastic blocks. The assembly was then immersed in a beaker containing a 34% solution of KOH. The nickel tabs protruded above the electrolyte and were connected to the test equipment.

Figure 1 shows a schematic diagram of a circuit for pulse discharges. The key element in the circuit is the switch (SW). In order to obtain a good contact for a short duration of time, a rotary switch was made. A diagram of this switch is shown in Figure 2. The switch is driven by a 27 RPM motor having adjustable contacts controlled by spring tension. The contact time can be set by adjusting the angle of the contact arm and the spring tension. The load

bank ("L") is adjusted to vary the discharge conditions, and the shunt ("S") measures the current flowing in the circuit.

The instrumentation employed measures the current flowing through X-X. The terminal load was measured prior to discharge using a Mueller Bridge. From the above data, cell or battery voltage was calculated. Alternately, battery voltage may be measured across the terminals and the reading used to calculate current. To avoid the effects of distributed load and terminal resistance of the battery, voltage and current were not measured simultaneously.

E = Bipolar Battery
SW = Rotating Switch
L = Load Back

L = Load Back S = Shunt

XX = To Oscilloscope for Current Measurement
YY = To Oscilloscope for Voltage Measurement

FIGURE 1. HIGH CURRENT - LOW VOLTAGE DISCHARGE APPARATUS

FIGURE 2. MOTOR DRIVEN SWITCH

SUMMARY OF TEST RESULTS AND CONCLUSIONS

Two end plates and four bipolar (middle) plates (1-5/8 inch dia.), 2 in² of sinter area, were impregnated according to the procedure set forth in the First Quarterly Report. The weight gain of the positive electrodes averaged 0.7 gram, equivalent to a theoretical capacity of 202 mAh. With a utilization coefficient of 80% at the C rate, this is equal to 162 mAh. The negative electrodes gained an average of 0.9 gram, and at a 50% utilization, this is equivalent to 169 mAh. The requirements call for 150 mAh.

After formation cycling and capacity determination, the end plates were assembled into a flooded cell. The cell was charged at 15 mA for 16 hours and pulsed at 10 amperes (forced discharge) with the voltage being recorded on a Brush Recorder Mark II. Figure 3A and Figure 3B show the results of the first and second pulses respectively. Subsequent tests gave the same results—the cell voltage fell just below 1.0 volts at the end of discharge. This is below the expected values based on the results obtained with the 4 in² electrodes.

The two end plate (2 in²) electrodes were fully discharged and disassembled from the cell. They were washed to remove all KOH and dried. A nickel tab was spotwelded on each electrode and the cell reassembled. It was charged (in a beaker) at 15 mA for 16 hours and then pulsed at fixed loads using an oscilloscope and camera to record the current. The results are shown in Figure 4. Calculating the voltage drops at these currents, the resulting cell voltage was plotted on a graph, shown in Figure 5. A cell voltage of 1.28 volts is assumed at zero current, as this is the normal open circuit voltage of a nickel-cadmium cell. The results show that at 10 amperes a cell voltage of 0.98 volts can be expected. This agrees with the forced discharge results.

To gain some insight into the problem, a series of pulses were made using a Hg/HgO reference electrode. The traces are shown in Figure 6. The results show that the negative electrode is highly polarized ($\Delta V = 0.66$) at the beginning, but recovers about 0.1 volt during the first 8 milliseconds. The positive electrode only drops 0.25 volt after 1 millisecond, but continues to decrease with time at a rate greater than the negative increases, resulting in a steady decrease of voltage with time. During the same time period, shown in Figure 4b, there is very little change in current. It should be noted that these tests are at contant load, not necessarily constant current, as are the forced discharge tests. It is postulated that both electrodes suffer from activation polarization, the negative more than the positive. However, the positive electrode is greatly susceptable to concentration polarization as indicated by the increase with time. To rule out the possibility of a "state of charge" effect, three pulses were performed at 1 minute intervals without recharging. These traces are shown in Figure 6d and are almost superimposed one on another. There is no change in the rate of decay with state of charge.

FIGURE 3a. PULSE NO. 1 10 AMPERES
PULSE DISCHARGE FOR A SINGLE BIPOLAR CELL
WITH 2.07 IN² ACTIVE PLATE AREA

FIGURE 3b. PULSE NO. 2 10 AMPERES
PULSE DISCHARGE FOR A SINGLE BIPOLAR CELL
WITH 2.07 IN² ACTIVE PLATE AREA

TIME IN MILLISECONDS

OSCILLOSCOPE TRACES OF

4 SQUARE INCH BIPOLAR ELECTRODES
8-10

FIGURE 5. VOLTAGE-CURRENT RELATIONSHIP SINGLE BIPOLAR CELL FOUR IN ACTIVE AREA (From Oscilloscope Pictures)

ALL LOAD AT 0.0244 Ω , I \sim 24 AMPERES

ELECTRODE TO REFERENCE

F16.6

PULSES

-10-

The next three larger cell sizes were tested using only the forced discharge method at constant current. The results are shown in Figures 7, 8, and 9. These indicate that the 2.76 in² (1-7/8 dia.) area electrodes are minimal for one pulse. There is some increase in voltage as the area is increased from 2.07 to 2.40, and again to 2.76. However, there is a larger jump in performance data for the 3.14 in² area electrodes shown in Figure 9. There appears to be a discontinuity since the area increase in each case is approximately the same ratio of 1.15:1. The capacities to area of electrode in each case were kept approximately equal for all 4 sizes.

Battery Discharge

A five cell battery was assembled from the 1-5/8 diameter electrodes (2 in²), with a separator of 7 mil non-woven nylon. Sealing the cells was found to be difficult. For this test, therefore, the battery was assembled in a different manner. The electrode flanges were coated with a sealant (of liquid neoprene) and "O" rings placed between each bipolar plate. The battery was assembled by stacking the plates on top of each other as follows. The electrolyte was added to the sinter, then the separator was placed over the sinter and more electrolyte added. The next bipolar plate was placed on top and the procedure repeated until the end plate was assembled. The battery was clamped between blocks of 1/2 inch thick lucite and fastened with machine screws around the periphery. A photograph of the battery is shown in Figure 10.

The battery was charged at 10 mA for 27-1/2 hours, with individual cells being monitored. Figure 11 shows the average cell voltage and the spread in cell voltages during the charge. The battery was placed on open circuit with all cell voltages monitored at 1.38 volts. It was then discharged at 100 mA as shown in the right hand side of Figure 11. This figure gives average cell voltages including voltage spread of each cell (battery voltage is five times the average cell voltage). The center cell fell to 0.18 volt after 55 minutes of discharge, although all other cells were at 1.20 volts. After the discharge, the battery was disassembled, the electrodes washed and dried, and reassembled changing the position of the bipolar electrodes. The resultant voltage readings were the same. The center electrode failed first, as before.

A careful study of the situation revealed that the center cell was not sealing and, therefore, losing electrolyte during overcharge; due to the compression method used, the gas pressure during overcharge was forcing electrolyte out. The cell was reassembled using Kel-F grease on the "O" rings. The cell was placed on charge and discharged at the 100 mA rate. All cell voltages were uniform with no visible leaks from the cells. The battery was pulsed at 10 amperes and the voltage recorded on the Brush Recorder Mark II. The results obtained (Fig. 12) are almost identical with those shown in Figure 3. The correlation between the 5 cell battery and the single cell of Figure 3 was made by dividing the battery voltage by 5.

FIGURE 7a. PULSE #1 CURRENT 11.0 AMPERES
PULSE DISCHARGE OF A SINGLE BIPOLAR CELL
WITH 2.40 IN² ACTIVE PLATE AREA

FIGURE 7b. PULSE #2 CURRENT 11.0 AMPERES
PULSE DISCHARGE OF A SINGLE BIPOLAR CELL
WITH 2.40 IN² ACTIVE PLATE AREA

FIGURE 8a. PULSE #1 CURRENT 10.5 AMPERES
PULSE DISCHARGE OF A SINGLE BIPOLAR CELL
WITH 2.76 IN² ACTIVE PLATE AREA

FIGURE 8b. PULSE #2 CURRENT 10.5 AMPERES
PULSE DISCHARGE OF A SINGLE BIPOLAR CELL
WITH 2.76 IN ACTIVE PLATE AREA

PULSE DISCHARGE FOR A SINGLE BIPOLAR CELL WITH 3,14 IN² ACTIVE PLATE AREA CURRENT 10,5 AMPERES

e,

PIGURE

FIGURE 10. FIVE CELL BATTERY WITH 2 IN² OF SINTER AREA

FIGURE 12a. PULSE NO. I CURRENT 10 AMPERES
PULSE DISCHARGE FOR A 5 CELL BIPOLAR BATTERY
WITH ACTIVE PLATE AREA OF 2.07 IN²/ PLATE

FIGURE 12b. PULSE NO. 2 CURRENT 10 AMPERES
PULSE DISCHARGE FOR A 5 CELL BIPOLAR BATTERY
WITH ACTIVE PLATE AREA OF 2.07 IN² /PLATE

DISCUSSION OF RESULTS AND CONCLUSIONS

From the data obtained to date, it appears that the minimal plate size most likely to meet the discharge requirements has the 1-7/8" diameter sinter (2.76 in²).

The plate has a capacity of approximately 200 mAh, at the 10 hour rate. The reduced voltage at the 10 ampere pulse discharge is primarily due to concentration polarization at the positive electrode, as evidenced by the oscilloscope traces.

Additional discharges will be conducted to determine the behavior of the 1-7/8 inch diameter electrodes in a five cell battery. Should the voltage fail to meet the 5 volts minimum, the plate with the 2 inch diameter will be used.

From the tests conducted with the 5 cell batteries, it appears that sealing will be a major problem in battery construction. It is presently contemplated to seal the individual cells using neoprene gaskets or "O" rings, then enveloping the 5 cell stack in an encapsulating compound.

Threaded terminals will be metallurgically bonded to the center of each end plate, with sufficient length protruding beyond the compound.

The progress of this work and the test results will be discussed in the next report.

WORK PLANNED

TASK II

- 1. Evaluate the effects of concentration and activation polarization and determine minimum plate area for a five cell squib battery.
- 2. Test and evaluate various separators.
- Determine the amount of electrolyte and required compression on the wet separator.
- 4. Establish method for introducing electrolyte into the cell.
- 5. Test materials and techniques for sealing cells.
- 6. Evaluate potting compounds and methods for encapsulating five cell batteries.

TASK III

- 1. Fabricate, test, and evaluate performance of 5 cell battery.
- 2. Determine charging rates and overcharge capabilities.
- 3. Build 10 batteries.

DISTRIBUTION LIST

CONTRACT NO.: NASS-10160

NASA and JPL

National Aeronautics & Space Admin.
Scientific and Technical Information
Facility
College Park, Maryland 20740
Attn: NASA Representative
Send 2 copies plus 1 reproducible

National Aeronautics & Space Admin. Washington, D. C. 20546 Attn: RNW/E.M. Cohn

National Aeronautics & Space Admin. Washington, D. C. 20546 Attn: FC/A. Am Greg Andrus

National Aeronautics & Space Admin Goddard Space Flight Center Greenbelt, Maryland Attn: Thomas Hennigan, Code 716.2

National Aeronautics & Space Admin. Goddard Space Flight Center Greenbelt, Maryland 20771 Attn: Joseph Sherfey, Code 735

National Aeronautics & Space Admin. Langley Research Center Instrument Research Division Hampton, Virginia 23365 Attn: John L. Patterson, MS-234

National Aeronautics & Space Admin. Langley Research Center Instrument Research Division Hampton, Virginia 23365 Attn: M. B. Seyffert, MS 112

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: N. D. Sanders, MS 302-1 National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: R. L. Cummings, MS 500-201

National Aeronautics & Space Admin. Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: R. R. Miller, MS 500-202

National Aeronautics & Space Admin. Geo. C. Marshall Space Flight Center Huntsville, Alabama 35812 Attn: Philip Youngblood

National Aeronautics & Space Admin. Geo. C. Marshall Space Flight Center Huntsville, Alabama 35812 Attn: Richard Boehme Bldg. 4487-BB

National Aeronautics & Space Admin.
Manned Spacecraft Center
Houston, Texas 77058
Attn: William R. Dusenbury
Propulsion & Energy Systems Branch
Bldg. 16, Sit 1

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: Robert Cohen Gemini Project Office

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: Richard Ferguson (EP-5)

National Aeronautics & Space Admin. Manned Spacecraft Center Houston, Texas 77058 Attn: James T. Kennedy (EE-5) National Aeronautics & Space Admin.
Manned Spacecraft Center
Houston, Texas 77058
Attn: Forrest E. Eastman (EE-4)

National Aeronautics & Space Admin. Ames Research Center Pioneer Project Moffett Field, California 94035 Attn: James R. Swain/A. S. Hertzog

National Aeronautics & Space Admin. Ames Research Center Moffett Field, California 94035 Attn: Jon Rubenzer Biosatellite Project

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103 Attn: Aiji Uchiyama

Department of the Army

U. S. Army Engineer R&D Labs. Fort Belvoir, Virginia 22060 Electrical Power Branch SMOFB-EP

Commanding Officer
U. S. Army Electronics R&D Labs.
Forth Monmouth, New Jersey 07703
Attn: Power Sources Division
Code SELRA/PS

Research Office
Rand D. Directorate
Army Weapons Command
Rock Island, Illinois 61201
Attn: Mr. G. Riensmith, Chief

U. S. Army Research Office Box CM, Duke Station Durham, North Carolina 27706 Attn: Dr. Wilhelm Jorgensen

Natick Laboratories Clothing and Organic Materials Div. Natick, Massachusetts. 01760 Attn: Robert N. Walsh/G. A. Spano Harry Diamond Laboratories

Room 300, Building 92

Conn.Ave. & Van Ness Street, N.W.

Washington, D.C. 20438

Attn: Nathan Kaplan

Army Materiel Command Research Division AMCRD-RSCM-T-7 Washington, D.C. 20315 Attn: John W. Crellin

Army Materiel Command
Development Division
AMCRD-DE-MO-P
Washington, D.C. 20315
Attn: Marshall D. Aiken

U.S. Army TRECOM Fort Eustis, Virginia 23604 Attn: Dr. R. L. Echols (SMOFE-PSG)

U. S. Army TRECOM
Fort Eustis, Virginia 23604
Attn: Leonard M. Bartone (SMOFE-ASE)

U. S. Army Mobility Command Research Division Center Line, Michigan 48090 Attn: O. Renius (AMSMO-RR)

Department of the Navy

Office of Naval Research Washington, D.C. 20360 Attn: Head, Power Branch, Code 429

Office of Naval Research Department of the Navy Washington, D.C. 20360 Attn: H. W. Fox, Code 425

Naval Research Laboratory Washington, D.C. 20390 Attn: Dr. J. C. White, Code 6160

U. S. Navy
Marine Engineering Laboratory
Annapolis, Maryland 21402
Attn: J. H. Harrison

Bureau of Naval Weapons
Department of the Navy
Washington, D.C. 20360
Attn: Whitewall T. Beatson
(Code RAAE-52)

Bureau of Naval Weapons
Department of the Navy
Washington, D.C. 20360
Attn: Milton Knight (Code RAAE-50)

Naval Ammunition Depot Crane, Indiana 47522 Attn: E. Bruess/H. Shultz

Naval Ordnance Laboratory
Department of the Navy
Corona, California 91720
Attn: William C. Spindler (Code 441)

Naval Ordnance Laboratory
Department of the Navy
Silver Spring, Maryland 20900
Attn: Philip B. Cole (Code WB)

Bureau of Ships
Department of the Navy
Washington, D.C. 20360
Attn: C. F. Viglotti (Code 660)

Bureau of Ships
Department of the Navy
Washington, D.C. 20360
Attn: Bernard B. Rosenbaum (Code 340)

Department of the Air Force

Space Systems Division Los Angeles AF Station Los Angeles, California 90045 Attn: SSSD

Flight Vehicle Power Branch Aero Propulsion Laboratory Wright-Patterson AFB, Ohio 45433 Attn: James E. Cooper

Air Force Cambridge Research Lab. L. G. Hanscom Field Bedford, Massachusetts 01731 Attn: Commander (CRO) Rome Air Development Center, ESD Griffis AFB, New York 13442 Attn: Frank J. Mollura (RASSM)

Other Government Agencies

National Bureau of Standards Washington, D.C. 20234 Attn: Dr. W. J. Hamer

Office, DDR&E, USE & BSS
The Pentagon
Washington, D.C. 20310
Attn: G. B. Wareham

Mr. Donald B. Hoatson Army Reactors, DRD U. S. Atomic Energy Commission Washington, D.C. 20545

Private Organizations

Aeroject-General Corporation Chemical Products Division Azusa, California 91702 Attn: Dr. S. O. Rosenberg

Aeronutronic Division
Philco Corporation
Ford Road
Newport Beach, California 92660

Aerospace Corporation P.O. Box 95085 Los Angeles, California 90045 Attn: Library

Allis-Chalmers Manufacturing Co. 1100 South 70th Street Milwaukee, Wisconsin 53201 Attn: Dr. P. Joyner

American University
Mass. & Nebraska Avenues, N.W.
Washington, D.C. 20016
Attn: Dr. R. T. Foley,
Chemistry Department

Arthur D. Little, Inc. Acorn Park Cambridge, Massachusetts 02140 Attn: Dr. Ellery W. Stone Atomics International Division North American Aviation, Inc. 8900 De Sota Avenue Canoga Park, California 91304 Attn: Dr. H. L. Recht

Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201 Attn: Dr. C. L. Faust

Bell Laboratories
Murray Hill, New Jersey 07971
Attn: U. B. Thomas/D. A. Feder

The Boeing Company
P. O. Box 98124
Seattle, Washington 98124

Borden Chemical Company Central Research Lab. P. O. Box 9524 Philadelphia, Pennsylvania 19124

Burgess Battery Company
Foot of Exchange Street
Freeport, Illinois 61032
Attn: Dr. Howard J. Strauss

C & D Batteries
Division of Electric Autolite Co.
Conshohocken, Pennsylvania 19428
Attn: Dr. Eugene Willinganz

Calvin College Grand Rapids, Michigan 49906 Attn: Prof. T. P. Dirkse

Catalyst Research Corporation 6101 Falls Road Baltimore, Maryland 21209 Attn: J. P. Wooley

ChemCell Inc.
3 Central Avenue
East Newark, N.J. 07029
Attn: Peter D. Richman

Delco Remy Division
General Motors Corporation
2401 Columbus Avenue
Anderson, Indiana 46011
Attn: Dr. J. Lander

Douglas Aircraft Company, Inc. Astropower Laboratory 2121 Campus Drive Newport Beach, California 92663 Attn: Dr. Carl Berger

Dynatech Corporation 17 Tudor Street Cambridge, Massachusetts 02138 Attn: R. L. Wentworth

Eagle-Picher Company Post Office Box 47 Joplin, Missouri 64802 Attn: E. M. Morse

Elgin National Watch Company 107 National Street Elgin, Illinois 60120 Attn: T. Boswell

Electric Storage Battery Co.
Missile Battery Division
2510 Louisburg Rd.
Raleigh, North Carolina 27604
Attn: A. Chreitzberg

Electric Storage Battery Co.
Carl F. Norberg Research Center
19 West College Avenue
Yardley, Pennsylvania 19068
Attn: Dr. R. A. Schaefer/W. S. Herbert

Electrochimica Corporation 1140 O'Brien Drive Menlo Park, California 94025 Attn: Dr. Morris Eisenberg

Electro-Optical Systems, Inc. 300 North Halstead Pasadena, California 91107 Attn: E. Findl Emhart Manufacturing Co. Box 1620 Hartford, Connecticut 06101 Attn: Dr. W. P. Cadogan

Engelhard Industries, Inc. 497 DeLancy Street Newark, New Jersey 07105 Attn: Dr. J. G. Cohn

Dr. Arthur Fleischer 466 South Center Street Orange, New Jersey 07050

General Electric Company
Schenectady, New York, 12301
Attn: Dr. R. C. Osthoff/Dr. W. Carson
Advanced Technology Lab.

General Electric Company
Missile & Space Division
Spacecraft Department
P. O. Box 8555
Philadelphia, Pennsylvania 19101
Attn: E. W. Kipp, Room T-2513

General Electric Company Battery Products Section P. O. Box 114 Gainsville, Florida 32601

General Electric Company Research Laboratories Schenectady, New York 12301 Attn: Dr. H. Liebhafsky

General Motors-Defense Research Labs. 6767 Hollister Street Santa Barbara, California 93105 Attn: Dr. J.S. Smatko/Dr. C. R. Russell

Globe-Union, Incorporated 900 East Keefe Avenue Milwaukee, Wisconsin 53201

Gould-National Batteries, Inc. Engineering and Research Center 2630 University Avenue, S.E. Minnesotav55416413 Attn: J. F. Donahue

Gulton Industries
Alkaline Battery Division
212 Durham Avenue
Metuchen, New Jersey 08840
Attn: Dr. Robert Shair

Hughes Aircraft Corporation Centinda Ave. & Teale St. • Culver City, California 90230 Attn: T. V. Carvey

Hughes Aircraft Corporation Bldg. 366, M.S. 524 El Segundo, California 90245 Attn: R. B. Robinson

Hughes Research Laboratories Corp. 3011 Malibu Canyon Rd. Malibu, California 90265

ITT Research Institute 10 West 35th Street Chicago, Illinois 60616 Attn: Dr. H. T. Francis

Institute for Defense Analyses
R&E Support Division
400 Army-Navy Drive
Arlington, Virginia 22202
Attn: Mr. R. Hamilton/Dr. Szego

Idaho State University
Department of Chemistry
Pocatello, Idaho 83201
Attn: Dr. G. Myron Arcand

Institute of Gas Technology State and 34th Street Chicago, Illinois 60616 Attn: B. S. Baker

Johns Hopkins University
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland 20910
Attn: Richard Cole

Johns-Manville R&E Center P.O. Box 159 Manville, New Jersey 08835 Attn: J. S. Parkinson Leesona Moos Laboratories
Lake Success Park, Community Drive
Great Neck, New York 11021
Attn: Dr. H. Oswin

Livingston Electronic Corporation Route 309 Montgomeryville, Pennsylvania 18936 Attn: William F. Meyers

Lockheed Missiles & Space Company 3251 Hanover Street Palo Alto, California 93404 Attn: Library

Mallory Battery Company 60 Elm Street North Tarryton, New York 10593 Attn: R. R. Clune

P. R. Mallory & Co., Inc. Northwest Industrial Park Burlington, Massachusetts O2103 Attn: Dr. Per Bro

P. R. Mallory & Co., Inc. 3029 E. Washington Street Indianapolis, Indiana 46206 Attn Technical Librarian

Melpar Technical Information Center 3000 Arlington Blvd. Falls Church, Virginia 22046

Metals and Controls Division Texas Instruments, Inc. 34 Forest Street Attleboro, Massachusstts 02703 Attn: Dr. E. M. Jost

Midwest Research Institute 425 Volker Boulevard Kansas City, Missouri 64110 Attn: Dr. B. W. Beadle

Monsanto Research Corporation Everett, Massachusetts 02149 Attn: Dr. J. O. Smith North American Aviation, Inc. Rocketdyne Division 6633 Canoga Avenue Canoga Park, California 91303 Attn: Library

North American Aviation, Inc. 12214 Lakewood Boulevard Downey, California 90241 Attn: Burton M. Otzinger

Dr. John Owen
P. O. Box 87
Bloomfield, New Jersey 07003

Power Information Center University of Pennsylvania Moore School Building 200 South 33rd Street Philadelphia, Pennsylvania 19104

Power Sources Division
Whittaker Corporation
9601 Canoga Avenue
Chatsworth, California 91311
Attn: Dr. M. Shaw

Philco Corporation
Division of the Ford Motor Co.
Blue Bell, Pennsylvania 19422
Attn: Dr. Phillip Cholet

Radiation Applications, Inc. 36-40 37th Street Long Island City, New York 11101

Radio Corporation of America Astro Division Hightstown, New Jersey 08520 Attn: Seymour Winkler

Radio Corporation of American P. O. Box 800 Princeton, New Jersey 08540 Attn: I. Schulman

Radio Corporation of America Somerville, New Jersey 08873 Attn: Dr. H. S. Lozier

Southwest Research Institute 8500 Culebra Road San Antonio, Texas 78206 Attn: Dr. Jan Al

Sonotone Corporation
Saw Mill River Road
Elmsford, New York 10523
Attn: A. Mundel

Texas Instruments, Inc. 13500 North Central Expressway Dallas, Texas 75222 Attn: Dr. Isaac Trachtenberg

Thomas A. Edison Research Laboratory McGraw Edison Company Watchung Avenue West Orange, New Jersey 07052 Attn: Dr. P. F. Grleger

TRW Systems, Inc.
One Space Park
Redondo Beach, California 90278
Attn: Dr. A. Krausz, Bldg. 60, Rm 929

TRW Systems Inc.
One Space Park
Redondo Beach, California 90278
Attn: Dr. Herbert P. Silverman

TRW, Inc. 23555 Euclid Avenue Cleveland, Ohio 44117 Attn: Librarian

Tyco Laboratories, Inc.
Bear Hill
Hickory Drive
Waltham, Massachusetts 02154
Attn: W. W. Burnett

Union Carbide Corporation Development Laboratory Library P. O. Box 6056 Cleveland, Ohio 44101

Union Carbide Corporation Parma Research Center P. O. Box 6116 Cleveland, Ohio 44101. Attn: Library University of California Space Science Laboratory Berkeley, California 94720 Attn: Dr. C. W. Tobias

University of Pennsylvania
Electrochemistry Laboratory
Philadelphia, Pennsylvania 19104

Western Electric Company Suite 802, RCA Bldg. Washington, D.C. 20006 Attn: R. T. Fiske

Westinghouse Electric Corporation Research & Development Center Churchill Borough Pittsburgh, Pennsylvania 15235

Whittaker Corporation P. O. Box 337 Newbury Park, California 91320 Attn: Mr. John Rhyne

Whittaker Corporation 3850 Olive Street Denver, Colorado 80237 Attn: Borch Wendir

Yardney Electric Corporation 40-50 Leonard Street New York, New York 10013 Attn: Dr. Geo. Dalin